Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Viruses ; 15(3)2023 03 13.
Article in English | MEDLINE | ID: covidwho-2320343

ABSTRACT

Nucleases are ubiquitous hydrolytic enzymes that cleave phosphodiester bond of DNA (DNases), RNA (RNases), or protein-RNA/DNA (phosphodiesterases), within the strand (endonucleases) or from the end (exonucleases) [...].


Subject(s)
Deoxyribonucleases , Endonucleases , Deoxyribonucleases/chemistry , Phosphoric Diester Hydrolases , DNA/chemistry , RNA/chemistry
2.
Int J Mol Sci ; 23(22)2022 Nov 08.
Article in English | MEDLINE | ID: covidwho-2110125

ABSTRACT

Since the onset of the COVID-19 pandemic, numerous publications have appeared describing autoimmune pathologies developing after a coronavirus infection, with several papers reporting autoantibody production during the acute period of the disease. Several viral diseases are known to trigger autoimmune processes, and the appearance of catalytic antibodies with DNase activity is one of the earliest markers of several autoimmune pathologies. Therefore, we analyzed whether IgG antibodies from blood plasma of SARS-CoV-2 patients after recovery could bind and hydrolyze DNA. We analyzed how vaccination of patients with adenovirus Sputnik V vaccine influences the production of abzymes with DNase activity. Four groups were selected for the analysis, each containing 25 patients according to their relative titers of antibodies to S-protein: with high and median titers, vaccinated with Sputnik V with high titers, and a control group of donors with negative titers. The relative titers of antibodies against DNA and the relative DNase activity of IgGs depended very much on the individual patient and the donor, and no significant correlation was found between the relative values of antibodies titers and their DNase activity. Our results indicate that COVID-19 disease and vaccination with adenoviral Sputnik V vaccine do not result in the development or enhancement of strong autoimmune reactions as in the typical autoimmune diseases associated with the production of anti-DNA and DNA hydrolyzing antibodies.


Subject(s)
Antibodies, Catalytic , COVID-19 , Viral Vaccines , Humans , SARS-CoV-2 , Pandemics , Antibodies, Antinuclear , DNA , Immunoglobulin G , Deoxyribonucleases
3.
Cells ; 11(18)2022 09 16.
Article in English | MEDLINE | ID: covidwho-2043594

ABSTRACT

Rationale: Infection with the SARS-CoV2 virus is associated with elevated neutrophil counts. Evidence of neutrophil dysfunction in COVID-19 is based on transcriptomics or single functional assays. Cell functions are interwoven pathways, and understanding the effect across the spectrum of neutrophil function may identify therapeutic targets. Objectives: Examine neutrophil phenotype and function in 41 hospitalised, non-ICU COVID-19 patients versus 23 age-matched controls (AMC) and 26 community acquired pneumonia patients (CAP). Methods: Isolated neutrophils underwent ex vivo analyses for migration, bacterial phagocytosis, ROS generation, NETosis and receptor expression. Circulating DNAse 1 activity, levels of cfDNA, MPO, VEGF, IL-6 and sTNFRI were measured and correlated to clinical outcome. Serial sampling on day three to five post hospitalization were also measured. The effect of ex vivo PI3K inhibition was measured in a further cohort of 18 COVID-19 patients. Results: Compared to AMC and CAP, COVID-19 neutrophils demonstrated elevated transmigration (p = 0.0397) and NETosis (p = 0.0332), and impaired phagocytosis (p = 0.0036) associated with impaired ROS generation (p < 0.0001). The percentage of CD54+ neutrophils (p < 0.001) was significantly increased, while surface expression of CD11b (p = 0.0014) and PD-L1 (p = 0.006) were significantly decreased in COVID-19. COVID-19 and CAP patients showed increased systemic markers of NETosis including increased cfDNA (p = 0.0396) and impaired DNAse activity (p < 0.0001). The ex vivo inhibition of PI3K γ and δ reduced NET release by COVID-19 neutrophils (p = 0.0129). Conclusions: COVID-19 is associated with neutrophil dysfunction across all main effector functions, with altered phenotype, elevated migration and NETosis, and impaired antimicrobial responses. These changes highlight that targeting neutrophil function may help modulate COVID-19 severity.


Subject(s)
COVID-19 , Neutrophils , B7-H1 Antigen , COVID-19/immunology , Cell-Free Nucleic Acids , Deoxyribonucleases , Humans , Interleukin-6/pharmacology , Neutrophils/cytology , Phenotype , Phosphatidylinositol 3-Kinases , Reactive Oxygen Species/metabolism , SARS-CoV-2
4.
Front Immunol ; 13: 879157, 2022.
Article in English | MEDLINE | ID: covidwho-1933664

ABSTRACT

During the COVID-19 pandemic, vaccination is the most important countermeasure. Pharmacovigilance concerns however emerged with very rare, but potentially disastrous thrombotic complications following vaccination with ChAdOx1. Platelet factor-4 antibody mediated vaccine-induced immune thrombotic thrombocytopenia (VITT) was described as an underlying mechanism of these thrombotic events. Recent work moreover suggests that mechanisms of immunothrombosis including neutrophil extracellular trap (NET) formation might be critical for thrombogenesis during VITT. In this study, we investigated blood and thrombus specimens of a female patient who suffered severe stroke due to VITT after vaccination with ChAdOx1 in comparison to 13 control stroke patients with similar clinical characteristics. We analyzed cerebral thrombi using histological examination, staining of complement factors, NET-markers, DNase and LL-37. In blood samples at the hyper-acute phase of stroke and 7 days later, we determined cell-free DNA, myeloperoxidase-histone complexes, DNase activity, myeloperoxidase activity, LL-37 and inflammatory cytokines. NET markers were identified in thrombi of all patients. Interestingly, the thrombus of the VITT-patient exclusively revealed complement factors and high amounts of DNase and LL-37. High DNase activity was also measured in blood, implying a disturbed NET-regulation. Furthermore, serum of the VITT-patient inhibited reactive oxygen species-dependent NET-release by phorbol-myristate-acetate to a lesser degree compared to controls, indicating either less efficient NET-inhibition or enhanced NET-induction in the blood of the VITT-patient. Additionally, the changes in specific cytokines over time were emphasized in the VITT-patient as well. In conclusion, insufficient resolution of NETs, e.g. by endogenous DNases or protection of NETs against degradation by embedded factors like the antimicrobial peptide LL-37 might thus be an important factor in the pathology of VITT besides increased NET-formation. On the basis of these findings, we discuss the potential implications of the mechanisms of disturbed NETs-degradation for diagnostic and therapeutic approaches in VITT-related thrombogenesis, other auto-immune disorders and beyond.


Subject(s)
COVID-19 , Extracellular Traps , Purpura, Thrombocytopenic, Idiopathic , Stroke , Thrombocytopenia , Thrombosis , Vaccines , Deoxyribonuclease I/metabolism , Deoxyribonucleases , Female , Humans , Neutrophils , Pandemics , Peroxidase/metabolism , Platelet Factor 4/metabolism , Purpura, Thrombocytopenic, Idiopathic/metabolism , Stroke/etiology , Stroke/metabolism , Thrombocytopenia/chemically induced , Thrombocytopenia/metabolism , Thrombosis/etiology , Thrombosis/metabolism , Vaccines/metabolism
5.
BMC Neurol ; 22(1): 186, 2022 May 20.
Article in English | MEDLINE | ID: covidwho-1849682

ABSTRACT

BACKGROUND: Recent evidence suggests a merging role of immunothrombosis in the formation of arterial thrombosis. Our study aims to investigate its relevance in stroke patients. METHODS: We compared the peripheral immunological profile of stroke patients vs. healthy controls. Serum samples were functionally analyzed for their formation and clearance of Neutrophil-Extracellular-Traps. The composition of retrieved thrombi has been immunologically analyzed. RESULTS: Peripheral blood of stroke patients showed significantly elevated levels of DNAse-I (p < 0.001), LDG (p = 0.003), CD4 (p = 0.005) as well as the pro-inflammatory cytokines IL-17 (p < 0.001), INF-γ (p < 0.001) and IL-22 (p < 0.001) compared to controls, reflecting a TH1/TH17 response. Increased counts of DNAse-I in sera (p = 0.045) and Neutrophil-Extracellular-Traps in thrombi (p = 0.032) have been observed in patients with onset time of symptoms longer than 4,5 h. Lower values of CD66b in thrombi were independently associated with greater improvement of NIHSS after mechanical thrombectomy (p = 0.045). Stroke-derived neutrophils show higher potential for Neutrophil-Extracellular-Traps formation after stimulation and worse resolution under DNAse-I treatment compared to neutrophils derived from healthy individuals. CONCLUSIONS: Our data provide new insight in the role of activated neutrophils and Neutrophil-Extracellular-Traps in ischemic stroke. Future larger studies are warranted to further investigate the role of immunothrombosis in the cascades of stroke. TRIAL REGISTRATION: DRKS, DRKS00013278, Registered 15 November 2017, https://www.drks.de/drks_web/navigate.do?navigationId=trial.HTML&TRIAL_ID=DRKS00013278.


Subject(s)
Extracellular Traps , Ischemic Stroke , Stroke , Thrombosis , Deoxyribonucleases , Humans , Neutrophils
6.
Clin Immunol ; 238: 109016, 2022 05.
Article in English | MEDLINE | ID: covidwho-1797060

ABSTRACT

Aiming to reduce mortality in COVID-19 with severe respiratory failure we administered a combined rescue treatment (COMBI) on top of standard-of-care (SOC: dexamethasone/heparin) consisted of inhaled DNase to dissolve thrombogenic neutrophil extracellular traps, plus agents against cytokine-mediated hyperinflammation, namely anti-IL-6-receptor tocilizumab and JAK1/2 inhibitor baricitinib. Patients with PaO2/FiO2 < 100 mmHg were analysed. COMBI group (n = 22) was compared with similar groups that had received SOC alone (n = 26) or SOC plus monotherapy with either IL-1-receptor antagonist anakinra (n = 19) or tocilizumab (n = 11). COMBI was significantly associated with lower in-hospital mortality and intubation rate, shorter duration of hospitalization, and prolonged overall survival after a median follow-up of 110 days. In vitro, COVID-19 plasma induced tissue factor/thrombin pathway in primary lung fibroblasts. This effect was inhibited by the immunomodulatory agents of COMBI providing a mechanistic explanation for the clinical observations. These results support the conduct of randomized trials using combined immunomodulation in COVID-19 to target multiple interconnected pathways of immunothrombosis.


Subject(s)
Antibodies, Monoclonal, Humanized , COVID-19 Drug Treatment , Deoxyribonucleases , Respiratory Insufficiency , Antibodies, Monoclonal, Humanized/therapeutic use , Azetidines/therapeutic use , Deoxyribonucleases/therapeutic use , Humans , Purines/therapeutic use , Pyrazoles/therapeutic use , Respiratory Insufficiency/drug therapy , Respiratory Insufficiency/virology , SARS-CoV-2 , Sulfonamides/therapeutic use , Treatment Outcome
7.
EBioMedicine ; 67: 103382, 2021 May.
Article in English | MEDLINE | ID: covidwho-1230443

ABSTRACT

BACKGROUND: Coagulopathy and inflammation are hallmarks of Coronavirus disease 2019 (COVID-19) and are associated with increased mortality. Clinical and experimental data have revealed a role for neutrophil extracellular traps (NETs) in COVID-19 disease. The mechanisms that drive thrombo-inflammation in COVID-19 are poorly understood. METHODS: We performed proteomic analysis and immunostaining of postmortem lung tissues from COVID-19 patients and patients with other lung pathologies. We further compared coagulation factor XII (FXII) and DNase activities in plasma samples from COVID-19 patients and healthy control donors and determined NET-induced FXII activation using a chromogenic substrate assay. FINDINGS: FXII expression and activity were increased in the lung parenchyma, within the pulmonary vasculature and in fibrin-rich alveolar spaces of postmortem lung tissues from COVID-19 patients. In agreement with this, plasmaaac acafajföeFXII activation (FXIIa) was increased in samples from COVID-19 patients. Furthermore, FXIIa colocalized with NETs in COVID-19 lung tissue indicating that NETs accumulation leads to FXII contact activation in COVID-19. We further showed that an accumulation of NETs is partially due to impaired NET clearance by extracellular DNases as DNase substitution improved NET dissolution and reduced FXII activation in vitro. INTERPRETATION: Collectively, our study supports that the NET/FXII axis contributes to the pathogenic chain of procoagulant and proinflammatory responses in COVID-19. Targeting both NETs and FXIIa may offer a potential novel therapeutic strategy. FUNDING: This study was supported by the European Union (840189), the Werner Otto Medical Foundation Hamburg (8/95) and the German Research Foundation (FR4239/1-1, A11/SFB877, B08/SFB841 and P06/KFO306).


Subject(s)
COVID-19/metabolism , Extracellular Traps/metabolism , Factor XII/metabolism , Autopsy , Case-Control Studies , Deoxyribonucleases/blood , Deoxyribonucleases/metabolism , Humans , Lung/metabolism , Neutrophil Activation , Pneumonia , Proteomics
SELECTION OF CITATIONS
SEARCH DETAIL